

IoT and Edge: Manufacturing

https://www.linkedin.com/in/ckiraly/

csaba.kiraly@digicatapult.org.uk

Future Networks (IoT, 5G)

Accelerating the early catapy adoption of advanced digital technologies in the UK

- Digital Catapult is the UK's leading advanced digital technology innovation centre.
- Uniquely positioned at the centre of all major contributors to technology advancement in the UK
- We provide physical and digital facilities for experimentation and testing.
- Our innovation programmes drive collaboration and encourage use of the facilities.
- We utilise our digital skills, expertise and startup ecosystem to de-risk corporate innovation.
- We convene and deliver collaborative research and development that leads to commercial exploitation and companies reducing risk.

The Edge and The Hype

What Edge **Computing Means for** Infrastructure and **Operations Leaders**

"Currently (2018), around 10% of enterprise-generated data is created and processed outside a traditional centralized data center or cloud.

By 2025, Gartner predicts this figure will reach 75%."

Gartner.

Strategic Planning Assumptions Forty percent of large enterprises will be integrating edge computing principles into their 2021 projects, up from less than 1% in 2017. By 2020, 100 million consumers will shop in augmented reality. By 2021, there will be \$2.5 million per minute in IoT spending and 1 million new IoT devices sold every hour.

What's good in the centralized Cloud?

- (Almost) unlimited resource scaling
 - For compute, storage, and for in-cloud networking
- Economy of scale
 - When compute/storage is the driving factor, cloud seems unbeatable
- Natural place for working with big data
 - Data-driven algorithm development
- Fantastic IT tooling and abstraction
 - laaS / PaaS / SaaS
 - DevOps tooling

What's wrong with the Cloud?

- Cloud is where big data lives. It is not where data is coming from
 - Data is generated at the boundary of the physical and IT(OT) world
- Bandwidth
 - Explosion of data from widespread and rich IoT
- Latency
 - Physics: speed of light
 - Add to it chatty protocol stacks
- Autonomy
 - By necessity and for resilience
- Privacy, or data secrecy
 - Rule no. 1 is still the same
- Cost (money and energy)
 - When the bulk of the cost is in the comms
- Legacy OT tech is embedded in the field
 - Often referred to as an IT/OT divide, it is sometimes more like an Ops vs. R&D divide. More about this later

Use Case: Advanced Composite Manufacturing

Automated Fiber Placement

Unique process to manufacture complex composite parts

- tapes fed through delivery system into a fibre placement head
- programmed fibre paths placed il layers on work surface to create preform
- individual layers of the preforms are consolidated on the fly
 - pressure roller
 - heating systems (infrared, laser, flash lamps)

IoT around the AFP process

Optimizing maintenance operations and uptime

Manufacturing process inspection and control

Keeping manufacturing tolerances while materials change and consumables wear

Product quality inspection

Wrinkles, gaps, twisting, inclusions, etc.

Material and Asset tracking

Tracking material location and conditions, and optimizing supplies

Environmental impact monitoring

- Quantifying the carbon footprint of the production process
 - AFP machine energy consumption ... parts consumption
 - Clean room, building, materials, IT infrastructure, etc.
 - Waste

IoT around the R&D on AFP process

There is more loT in R&D around the manufacturing process!

- What are the compromises between cost, speed, structural properties, manufacturing tolerances, and carbon footprint?
- What is the fixed carbon footprint cost of the R&D process itself?
- What level of insight we can provide

IT/OT divide or OT/R&D divide?

- Collaborative R&D is extremely difficult on the shop floor
 - IT/IoT/OT tooling related difficulties
 - But mostly: organizational difficulties
- Not just R&D, but any innovation on the factory floor

What **tooling** can help Digital Manufacturing Innovation in Europe?

- Great manufacturing legacy, huge innovation potential, lots of blockers
- Edge compute and reliable wireless are key to enable innovation

Technology playing field

CATAPULT Digital

- Low-cost, open source based, rapid prototyping enabled loT gateways capturing process information
 - E.g. OPC-UA directly from the machines
 - Add-on sensors
 - Energy monitoring
 - Vibration, temperature, force

- 4G/5G small cell
- LoRaWAN/LoRa-based local network
 - Proprietary LoRa, WiFi, LiFi in other projects
- Asset (Condition) Tracking
 - RFID and other tags (BLE, UWB, etc.)
- Keeping data safe
 - QKD infrastructure

5G-encode

Device Edge processing

Device edge: TinyML

TinyML: ultra-low power (<mW) machine learning technology enabling battery-operated on-device analytics at the very edge

Technology Enablers of TinyML

Fast progress on enabling technologies

- Model compression (INT quantization, pruning, etc.) to <250 KBytes model size
- **HW architecture** innovation
 - Near-memory, in-memory, on-sensor Al
- Software frameworks and toolsets

Powerful data-driven programming paradigm shift for embedded devices

- Enabling new use cases
- Enabling wider developer ecosystem

Enabled by TinyML

With low-power sensing and low-power comms, 10.000+ devices will soon be here!

	ti	ny MLPerf
Task Category	Use Case	Model Type
Audio	Audio Wake Words Context Recognition Control Words Keyword Detection	DNN CNN RNN LSTM
Image	Visual Wake Words Object Detection Gesture Recognition Object Counting Text Recognition	DNN CNN SVM Decision Tree KNN Linear
Industry / Telemetry	Segmentation Anomaly Detection Forecasting Activity Detection	DNN Decision Tree SVM Linear

Csaba Kiraly

- in https://www.linkedin.com/in/ckiraly/
- csaba.kiraly@digicatapult.org.uk